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Disclaimer

This presentation is grounded on the following paper:
I Mastelini, S.M. and de Leon Ferreira, A.C.P., 2021. Using dynamical quantization

to perform split attempts in online tree regressors. Pattern Recognition Letters,
145, pp.37-42.
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Introduction

Context:
I Numerical input features
I Axis-aligned splits

I xj ≤ v (left branch)
I xj > v (right branch)
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Decision splits

I We need partitions that make the sub-spaces maximally homogeneous

I How to pick the best threshold?
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Variance reduction

I Regression trees usually aim at reducing the variance within the created partitions
I Variance Reduction heuristic

VR(y, x, Θ) = Var(y)− |yx≤Θ|
|y |

Var(yx≤Θ)− |yx>Θ|
|y |

Var(yx>Θ)

I Best split candidate

(x∗,Θ∗) = argmax(xi ,v),xi∈{x1,..,xm},v∈RVR(y , xi , v)

I Equivalent to minimizing the Mean Squared Error (MSE)
I The created partitions are maximally compact
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Variance Reduction

I VR(x1,a) = 85.445− ( 65
300)×

22.895− (235
300 × 59.75) = 33.683

I VR(x1,b) = 35.570
I VR(x2, c) = 7.811

We are all set to build regression trees!
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Incremental regression trees: the needed tools

1. How to assure that our split candidates are indeed the best ones?
I Hoeffding Bound X

2. How to evaluate split candidates?
2.1 We need to calculate the elements of the VR equation

I Incremental variance calculation!
2.2 For any given partition (xi , v ): yxi≤v and yxi>v

I How to do that incrementally and with reduced memory footprint? (and running
time)

I Answer: attribute observer (AO) algorithms (a.k.a. splitters)
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The naive approach

I Keep:
I n: number of observations
I
∑

y : sum of y values
I
∑

y2: sum of the squared y values

I Var = 1
n−1

(∑
y2 − 1

n (
∑

x)2
)

I Used in Fast Incremental Model Tree with Drift Detection1 (FIMT-DD)

1
Ikonomovska, E., Gama, J. and Džeroski, S., 2011. Learning model trees from evolving data streams. Data mining and knowledge discovery, 23(1),

pp.128-168.
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Naive approach: the cool part

I Imagine that we keep two variance estimators:
I Total variance of y : varT (y)
I Variance of y for elements that satisfy xi ≤ v : varl (y) (left tree branch)

I How do we get the complement, varr (y)? (right tree branch)
I nr = nT − nl
I
∑

yr =
∑

yT −
∑

yl
I
∑

y2
r =

∑
y2

T −
∑

y2
l

I We do not need to keep varr !
I Memory savings to the attribute observers
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Why naive?

I Both
∑

y2 and
∑

y can become really big
I Numerical cancellation
I Sometimes can even yield negative variance values (??)
I Text books do not advice to use this estimator in real-world applications1

1
Knuth, D.E., 2014. Art of computer programming, volume 2: Seminumerical algorithms. Addison-Wesley Professional.
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Welford’s algorithm: a stable solution

Initialize: x1 = 0, M2,1 = 0. For any n > 1:

I xn = xn−1 +
xn − xn−1

n
I M2,n = M2,n−1 + (xn − xn−1)(xn − xn)

I Variance: M2,n
n−1

In the next slide we drop the n indexing, for simplicity
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Handling partial statistics

Handling addition1 and subtraction2

Addition:
I nAB = nA + nB

I xAB =
nAxA + nBxB

nAB

I M2,AB = M2,A + M2,B + δ2 nAnB

nAB

Subtraction:
I nA = nAB − nB

I xA =
nABxAB − nBxB

nA

I M2,A = M2,AB −M2,B − δ2 nAnB

nAB
I In the expressions above, δ = xB − xA

1
Chan, T.F., Golub, G.H. and LeVeque, R.J., 1982. Updating formulae and a pairwise algorithm for computing sample variances. In COMPSTAT 1982 5th

Symposium held at Toulouse 1982 (pp. 30-41). Physica, Heidelberg.
2

Mastelini, S. M., de Leon Ferreira, A. C. P., 2021. Using dynamical quantization to perform split attempts in online tree regressors. Pattern Recognition
Letters, 145, (pp. 37-42).
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Benchmarking the variance estimators

I Naive and Welford against the non-incremental variance estimator
I Increasing sample size
I Difference between the obtained variances

I Ground truth: non-incremental variance
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Benchmarks: uniform data between (0, 1)

I So far, so good
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Benchmarks: adding constant shift of 109

I Hence, the Welford’s algorithm will be our preferred choice
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E-BST: using trees to build trees

I Keep numerical features in a
binary search tree:

I Each node carries the feature
value and a var estimator for y

I BST is not balanced
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E-BST: adding a new node (I)

I The variance estimates are updated as new values
are sorted down the BST

I Only statistics of the left branches are updated as
new values are inserted into the BST

I Partial statistics are kept
I The updated nodes are in red
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E-BST: adding a new node (II)

The complete statistics are retrieved by performing a
complete in-order traversal:

1. Create an auxiliary variance estimator varaux

2. If traversing to:
2.1 left branch: pass varaux without modification
2.2 right branch: update varaux with the current node’s

statistics before descending

3. The complete statistics (test ≤) are given by
aggregating varaux and the current node’s variance
estimator

4. Undo changes to varaux when backtracking
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E-BST: cost and variant

Insertion O(log n) or O(n)*
Memory O(n)

Query time O(n)
* the worst case, when incoming instances are ordered

Some alternatives to alleviate these costs:
I Limit the number of nodes x
I Round the incoming data before insertion (Truncated E-BST – TE-BST) X
I From time to time, remove bad split candidates from the BST1 X

1
Ikonomovska, E., Gama, J. and Džeroski, S., 2011. Learning model trees from evolving data streams. Data mining and knowledge discovery, 23(1),

pp.128-168.
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QO: simple yet effective solution

I Can we get rid of the logarithmic cost per insertion?
I What if we reached a cost of O(1) per insertion? Answer: Hashing!

I Inspiration in Locality Sensitive Hashing (LSH)1:
I Instead of mapping each element to its own hash slot, map similar elements to the

same slot
I Straightforward projection rule: h =

⌊xi

r

⌋
, where r is the quantization radius

(hyperparameter)

1
Datar, M., Immorlica, N., Indyk, P. and Mirrokni, V.S., 2004, June. Locality-sensitive hashing scheme based on p-stable distributions. In Proceedings of the

twentieth annual symposium on Computational geometry (pp. 253-262).
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QO: example

Let’s assume r = 0.25 and an empty hash table H
I Insertion points: 2.3, 3.1, 7.78, 7.8

I h2.3 =
⌊ 2.3

0.25

⌋
= b9.2c = 9

I h3.1 =
⌊ 3.1

0.25

⌋
= 12

I h7.78 = 31
I h7.8 = 31

I For each slot we keep the mean x value and a variance estimator for y
I Split points: Middle point between two consecutive slots
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QO: cost and limitations

Cost E-BST TE-BST QO
Insertion (per instance) O(log n) or O(n)* O(log n

′
) or O(n

′
)* O(1)

Memory O(n) O(n
′
) O(|H|)

Query time O(n) O(n
′
) O(|H| log |H|)

* the worst case, when incoming instances are ordered

I |H|: number of slots in the hash
I n

′ ≤ n (depending on the rounding procedure)
I The costs of QO depend on the choice of r
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Friendly reminder

I Regression trees maximize the VR when making splits
I Incremental decision trees use attribute observers (AO) to evaluate split

candidates
I Each tree leaf carries one AO per input feature
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100k samples: Friedman and Planes2D
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Summary

I We apply a robust and incremental variance estimator to Hoeffding Tree
Regressors

I We proposed a simple yet effective attribute observer algorithm for incremental
regression tree construction

I QO is able to deliver faster tree construction with reduced memory footprint,
while keeping the error increase minimal

I You can check everything in River :-D
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What next?

I Mini-batches and distributed processing
I QO is mergeable!
I We can take advantage of vectorization and distributed processing units

I Investigate in depth the impact of r (quantization radius) and alternatives to select
it automatically
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Thank you so much for your attention!

Questions?
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